Entropy Numbers of Embeddings of Weighted Besov Spaces

نویسندگان

  • Thomas Kühn
  • Hans-Gerd Leopold
  • Winfried Sickel
  • Leszek Skrzypczak
  • L. Skrzypczak
چکیده

We investigate the asymptotic behavior of the entropy numbers of the compact embedding B1 p1,q1(R d , α) ↪→ B2 p2,q2(R ). Here Bs p,q (R d , α) denotes a weighted Besov space, where the weight is given by wα(x) = (1 + |x |2)α/2, and B2 p2,q2 (Rd ) denotes the unweighted Besov space, respectively. We shall concentrate on the so-called limiting situation given by the following constellation of parameters: s2 < s1, 0 < p1, p2 ≤ ∞, and α = s1 − d p1 − s2 + d p2 > d max ( 0, 1 p2 − 1 p1 ) . In almost all cases we give a sharp two-sided estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy Numbers of Trudinger–strichartz Embeddings of Radial Besov Spaces and Applications

The asymptotic behaviour of entropy numbers of Trudinger–Strichartz embeddings of radial Besov spaces on Rn into exponential Orlicz spaces is calculated. Estimates of the entropy numbers as well as estimates of entropy numbers of Sobolev embeddings of radial Besov spaces are applied to spectral theory of certain pseudo-differential operators.

متن کامل

Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights.∗

We study compact embeddings for weighted spaces of Besov and TriebelLizorkin type where the weights belong to Muckenhoupt Ap classes. We focus our attention on the influence of singular points of the weights on the compactness of the embeddings as well as on the asymptotic behaviour of their entropy and approximation numbers.

متن کامل

Homogeneity property of Besov and Triebel-Lizorkin spaces

We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a homogeneity property for functions with bounded support in the frame of these spaces. As the proof is based on compact embeddings between the studied function spaces we present also some results on the entropy numbers of these embeddings. Moreover, we derive some applications in terms of pointwise mu...

متن کامل

Entropy numbers of embeddings of some 2-microlocal Besov spaces

We investigate compactness and asymptotic behaviour of the entropy numbers of embeddings B s1,s1 p1,q1 (R, U) ↪→ B s2,s2 p2,q2 (R, U) . Here B ′ p,q (Rn, U) denotes a 2-microlocal Besov space with a weight given by the distance to a fixed set U ⊂ Rn.

متن کامل

On approximation numbers of Sobolev embeddings of weighted function spaces

We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005